'Function of Water in Catalyzing the Reaction between Nitrogen Tetroxide and Potassium Chloride," Ind. Eng. Chem., 24, 1084 (1932).
"Rediscovery of Nitryl Chloride," This Journal, 54, 3615 (1932).
'Samuel Wilson Parr," Proc. Illinois State Acad. Sci., 25, No. 2, 41 (1932), and This Journal, 54, Proc. 1 (1932).
''Types of Chemical Reactions," ibid., 55, 656 (1933).
With Don B. Forman, "Aldehyde-amide Condensation. I. Reactions between Aldehydes and Acetamide," ibid., 55, 3493 (1933).
"Explanation of the Formation of Alkyl Nitrites in Dilute Solutions; Butyl and Amyl Nitrites," ibid., 55, 3888 (1933).
"Alexander Smith," Proc. Am. Acad. Arts Sci., 68, 673 (1933).
"The Electronic Structure of Inorganic Complexes," This Journal, 55, 4889 (1933).,
"The Reintegration of Science," Ind. Eng. Chem., News Ed., 12, 378 (1934).
"Iodine Cations," This Journal, 56, 1819 (1934).
With V. S. Culp and R. D. Reed, "Report of the Com. mittee on Chemistry Libraries,' J. Chem. Education, 11, 114 (1934).
"Professor Edward Bartow, President-elect of the Ameri. can Chemical Society," Sci. Monthly 40, 286 (1935).
"Electronic Theories of Lewis and Kossel," Science, 81, 628 (1935).
"Edward Wight Washburn," Trans. Illinois State Acad. Sci., 28, No. 1, 39 (1935).
With G. F. Hoprman, "Synthetic Resin-like Products,"' United States Patent 2,028,914, Jan. 28, 1935; to Pittsburgh Plate Glass Co.
"'Electronic Theories," Chemical Reviews, 17, No. 1, 1 (1935).
''The Way Forward in Chemistry," Science, 82, 357 (1935).
With Bhagat Singh, 'The Parachors of Methyl Nitrite and Ethyl Nitrites and of Nitromethane and Nitroethane," This Journal, 58, 802 (1936).
"Butyl Nitrite," Organic Syntheses, 16, 7 (1936).
With H. S. Bоotry and Others, ''Nitrogen Trichloride,' Inorganic Syntheses, Vol. I, p. 65, McGraw•Hill Book Company, New York, N. Y., 1939.
Two further articles, "The Ketazines of Levulinic Acid and of Levulinic Hydrazide" by C. W. Bennett (Teis Journal, 80,1747 (1928)) and "The Synthesis of α, β, γ.Trimethylglutaric Acid" by F. E. Ray (ibid., 50, 558 (1928)), and two Theses, 'Researches on the Structure of Anthracene" by E. A. Wildman (University of Illinois, 1922) and 'An Attempt to Prepare an Aliphatic β-Diazo Compound" by Virointa Bartow (University of Illinois, 1923), were included in a partial list of his publications prepared by Professor Noyes himself. These researches were carried on under Professor Noyes direction and at least in the case of the two published articles, he either wrote or assisted in their writing and publication.
B. S. Hopkins
[Contribution from the School of Chemistry of the Institute of Technology of the University of Minnesota]

The Crystal Structure of Ammonium Pentachlorozincate ${ }^{1}$

By Harold P. Klug and Leroy Alexander ${ }^{2}$

Introduction

The group MX_{5} occurs rather infrequently in the stoichiometry of inorganic compounds as compared with such groups as $\mathrm{MX}_{3}, \mathrm{MX}_{4}, \mathrm{MX}_{6}$ and $\mathrm{M}_{2} \mathrm{X}_{7}$. It is well known also that crystal chemistry reveals numerous examples of three-, four-, six-, eight- and twelve-fold coöordination by a central atom, whereas a coördination of five is virtually unknown. Such unusual stoichiometry is occasionally found in complex compounds of the general formula $\mathrm{A}_{m} \mathrm{MX}_{n}$, where A is a univalent cation, M is a di- or trivalent metal, and X is a halogen. Examples are $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{ZnCl}_{5}$, and $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{InCl}_{5} \cdot \mathrm{H}_{2} \mathrm{O}$, both of which have been under investigation in this Laboratory to determine the nature of the coordination groups present.
Although many halogen complexes of the general formula $\mathrm{A}_{m} \mathrm{MX}_{n}$ have had their crystal structures studied, very few involving a stoichi. ometry of MX_{5} have been examined. Brosset ${ }^{3}$
(1) Presented before the Division of Physical and lnorganic Chemistry, Cleveland meeting of the American Chemical Society, April, 1944.
(2) (a) Shevlin Fellow in Chemistry, 1942-1943. (b) From a thesis by Leroy Alexander, presented to the Graduate Faculty of the University of Minnesota, in partial fulnllment of the requirements for the Ph.D. degree, July, 1943. (c) Present address: General Electric Company, Pittsfield, Mass.
(3) Brosset. Z. anorg. allgem. Chem., 835, 139 (1937); "Electro. chemical and X.Ray Crystallographic Investigation of Complex Aluminum Fluorides," Separate. Stockholto, 1942. 120 pp
determined the crystal structures of $\mathrm{Tl}_{2} \mathrm{AlF}_{5}$ and $\mathrm{K}_{2} \mathrm{AlF}_{5} \cdot \mathrm{H}_{2} \mathrm{O}$, and in each case found the net composition AlF_{5} to be achieved through infinite chains of AlF_{6} octahedra extending through the crystal. These chains are formed by the common sharing of the halogen atoms of two opposite vertices of each octahedron with neighboring octahedra. The actual coördination about the aluminum then is six-fold, and there are no AlF F_{5} groups as such in these compounds.

Phosphorus pentachloride and pentabromide appear to be the only other compounds involving the stoichiometry of MX_{5} which have had crystal structure investigations. Powell, Clark, and Wells ${ }^{4}$ found no PCl_{5} molecules in phosphorus pentachloride but instead a CsCl-type packing of ionic tetrahedral $\mathrm{PCl}_{4}{ }^{+}$and octahedral $\mathrm{PCl}_{6}{ }^{-}$ groups. The structure of phosphorus pentabromide, however, is entirely different. ${ }^{5}$ It consists of a packing of tetrahedral $\mathrm{PBr}_{4}{ }^{+}$and Br^{-}ions.

In view of the interesting results reported for compounds involving MX_{5} groups, and the further fact that zinc-halogen complexes in general have had little crystal-chemical study, it seemed worthwhile to study $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{ZnCl}_{5}$ thoroughly. This communication reports the results of a complete determination of its crystal structure. It is shown that the structure is to be regarded as a
(4) Powell, Clark and Wells, J. Chem. Soc., 642 (1942).
(i) Powell and Clark, Noture, 145, 9;1 (1940)
packing of $\mathrm{NH}_{4}^{+}, \mathrm{Cl}^{-}$, and ZnCl_{4}^{-}ions, and its chemical formula might be more accurately written as $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{ZnCl}_{4} \cdot \mathrm{NH}_{4} \mathrm{Cl}$.

Crystallographic Data

Pierre ${ }^{6}$ was the first to report the preparation of $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{ZnCl}_{5}$. Marignac ${ }^{7}$ also prepared it, and in addition obtained plate-like crystals of the salt $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{ZnCl}$. Following this work as many as eight ammonium chlorozincates of various compositions were reported, but in 1898 Base, ${ }^{8}$ in a systematic attempt to prepare them all, succeeded in obtaining only the two salts described by Marignac. Finally, Meerburg ${ }^{9}$ applied the phase rule to the system $\mathrm{NH}_{4} \mathrm{Cl}-\mathrm{ZnCl}_{2}-\mathrm{H}_{2} \mathrm{O}$ and proved that only $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{ZnCl}_{4}$ and $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{ZnCl}_{6}$ are capable of existence in aqueous solution between 0 and 30°.

The pentachlorozincate was investigated crystallographically by Marignac, Rammelsberg, ${ }^{10}$ and Johnsen, ${ }^{11}$ who showed it to be rhombic bipyramidal with the axial ratios $a: b: c=0.7822$: $1: 0.6915$. Johnsen reported the density to be approximately 1.81. Marignac found the crystals to possess two habits, prismatic with elongation in the a direction, and nearly equi-dimensional in all directions. Twinning on the (110) face was reported to occur commonly.

Experimental

The crystals used in this study were prepared from reagent grade salts using three formula weights of ammonium chloride to one of zinc chloride. These were dissolved in the minimum amount of conductivity water, after which the solution was filtered and set aside in a desiccator over calcium chloride to evaporate. The marked tendency to twin was observed frequently, and the two crystal habits reported by Mariguac were both obtained. In solutions of low acidity the equi-dimensional types predominated, while by increasing the acidity by the addition of hydrochloric acid it was sometimes possible to obtain only the prismatic variety. The crystals were pressed between filter papers to remove adhering mother liquor, and dried in an electric oven at 100° for about an hour. Gravimetric analysis for zinc by precipitation as the 8-hydroxyquinolate and for chloride by precipitation as silver chloride ${ }^{12}$ confirmed their composition as $\left(\mathrm{NH}_{4}\right) \mathrm{ZnCl}_{6}$.

Preliminary Laue photographs showed orthorhombic symmetry, confirming the findings of the earlier crystallographic studies. Layer-line meas-

[^0]urements from rotation photographs about each of the crystal axes were then used to obtain the approximate dimensions of the unit cell. These values were subsequently refined using pinacoid reflections in the equatorial layer lines of oscillation photographs. The revised lattice constants were found to be $a_{0}=8.74, b_{0}=9.84$, and $c_{0}=$ $12.61 \AA$. (all $\pm 0.02 \AA$.), corresponding to axial ratios of $a: b: c=0.6930: 0.7805: 1$ in good agreement with those reported in the literature when the axes are appropriately interchanged. Using Johnsen's value for the density, 1.81 , the unit cell was found to contain four molecules of the composition $\left(\mathrm{NH}_{4}\right) \mathrm{ZnCl}_{6}$.

The underlying lattice type and the space group were determined from Laue data with the aid of a pyroelectric test for a center of symmetry. Symmetrical and unsymmetrical Laue photographs taken with tungsten radiation ($\lambda_{\text {min. }}=0.33 \AA$.) were analyzed by means of gnomonic projections, and first-order reflections examined for extinctions. The presence of all types of pyramid reflections in the first order indicated a simple primitive lattice. Two clear-cut extinctions were found, ($h k 0$) with (h) odd, and ($0 k l$) with $(k+l$) odd. These established the space group as either $D_{2 k}^{16}$ or $C_{2 v}^{\theta}$. A pyroelectric test by the method described by Martin ${ }^{18}$ was negative, thus indicating the presence of a center of symmetry and uniquely fixing the space group as $D_{2 h}^{18}-P n m a$.
Intensity data from more than six hundred planes were obtained from three series of 15° oscillations about the crystal axes using filtered CuK_{α} radiation. The reflections were indexed by the Bernal reciprocal lattice technique as described by Buerger. ${ }^{14}$ The multiple film technique ${ }^{15}$ was used, and the intensities were estimated visually using a calibrated scale. Nonequatorial reflections were corrected for reflection time by the method of Hettich. ${ }^{16}$ An empirical correction was also made to place the intensities from all films on a common basis. Finally, the intensities were reduced to relative structure factors by multiplying by the reciprocals of the Lorentz and polarization factors and extracting the square root. No attempt was made to apply the temperature factor or the absorption factor except that small crystals were used to reduce the effect of the latter.

Determination of the Structure

The space group $D_{2 h}^{16}$-Pnma possesses two-fold screw axes parallel to each crystallographic axis, and symmetry planes perpendicular to them. A glide plane (n) .with glide components of $b / 2+$ $c / 2$ is situated at $x=1 / 4$ and $8 / 4$, a mirror plane (m) at $y=1 / 4$ and $3 / 4$, and a glide plane (a) with
(13) Martin. Min. Mag., 22, 519 (1931).
(14) Buerger, "X.Ray Crystallography," John Wiley and Sons. Inc., New York, N. Y., 1942, pp. 133-155, 193-198.
(15) de Lange, Robertson, and Woodward, Proc. Roy. Soc. (Lon. don), A171, 398 (1939).
(16) Hettich, 7. Krist., 90, 479 (1935)
a glide component of $a / 2$ at $z=1 / 4$ and $3 / 4$. The following sets of equivalent positions are available ${ }^{17}$
4: (a) 000;0这0; $\frac{1}{2} 0 \frac{1}{2} ; \frac{1}{2} \frac{1}{2} \frac{1}{2}$. $\}$
(symmetry centers)
(b) $00 \frac{1}{2} ; 0 \frac{1}{2} \frac{1}{2} ; \frac{1}{3} 00 ; \frac{1}{2} \frac{1}{2} 0$.
(c) $x \frac{1}{2} z ; \bar{x} \frac{2}{2} \overline{2}$;
$\frac{1}{2}-x, \frac{3}{4}, \frac{1}{2}+z ; \frac{1}{2}+x, \frac{1}{4}, \frac{1}{2}-z$. (mirror plane)
8: (d)

$$
\begin{aligned}
& x y z ; \frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{3}-z ; \dot{x}, \frac{1}{2}+y, \tilde{z} \text {; } \\
& \bar{x} \bar{y} \bar{z} ; \frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{3}+z ; x, \frac{1}{2}-y, z ; \\
& \frac{1}{2}-x, y, \frac{1}{2}+z \text {; } \\
& \frac{2}{2}+x, y, \frac{2}{3}-z \text {. (general positions) }
\end{aligned}
$$

There must be placed in the unit cell with the above symmetry elements 4 zinc atoms, 12 ammonium groups, and 20 chlorine atoms.

In the only two compounds of similar stoichiometry which have been studied to date, namely $\mathrm{Tl}_{2} \mathrm{AlF}_{5}$ and $\mathrm{K}_{2} \mathrm{AlF}_{5} \cdot \mathrm{H}_{2} \mathrm{O}$, the basic structural feature is an infinite chain of AlF_{6} octahedra formed by the sharing of opposite corners. The $\mathrm{Al}-\mathrm{F}$ distance in $\mathrm{Tl}_{2} \mathrm{AlF}_{5}$ is reported to be $1.91 \AA$. which is in good agreement with the sum of the ionic radii, $1,86 \AA .{ }^{18}$ This is good evidence that the Al-F bond is essentially ionic.

It seemed, therefore, that a structure involving chains of ZnCl_{6} octahedra might be predicted for $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{ZnCl}_{5}$ if zinc could coördinate six chlorine atoms. In zinc chloride, which is reported to be isomorphous with cadmium chloride, ${ }^{19}$ such octahedral coördination of chlorine exists. In cadmium chloride ${ }^{20}$ the observed $\mathrm{Cd}-\mathrm{Cl}$ distance is $2.66 \AA$. as compared with the sum of the ionic radii, $2.78 \AA$. This decrease is to be attributed to the partial covalent character of the bond. Since a $\mathrm{Zn}-\mathrm{Cl}$ bond is expected to possess a comparable covalent character, an expected $\mathrm{Zn}-\mathrm{Cl}$ distance of approximately $2.44 \AA$. in $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{ZnCl}_{5}$ would be predicted from the sum of the ionic radii, $2.55 \AA$., provided octahedral coördination exists. It was observed that $b_{0} / 4=9.84 / 4=2.46 \AA$. , a value almost exactly equal to the expected $\mathrm{Zn}-\mathrm{Cl}$ distance of $2.44 \AA$. This suggests chains of ZnCl_{6} octahedra extending in the b direction. Ammonium ions would be situated between the chains and hold the structure together. From the known structures of ammonium chloride it would be predicted that ammonium ions would be surrounded by six or eight chloride ions at a distance of approximately $3.30 \AA$.

Numerous attempts at predicting a structure on the basis of the above considerations were all unsuccessful. One difficulty always arose, namely, that the ammonium ions could not be accommodated without abnormally close approach between ammonium and chloride ions and leaving, at the same time, an excessively open structure in other regions of the cell. It was finally decided that further use of such trial-and-error methods

[^1]was a waste of time, and that the problem should be attacked by one or more of the methods of Fourier analysis.

From the relatively strong diffracting power of zinc it was felt that at least the locations of the zinc atoms could be established by the use of onedimensional Patterson-Harker ${ }^{21} \quad F^{2}$ summations. The presence of a symmetry plane perpendicular to each crystallographic axis makes this method of attack feasible.

Because of the mirror plane parallel to (010) at $y=0.25$ and 0.75 , the distribution of atoms in the b direction is decidedly limited. An atom must lie precisely on the mirror plane or at a sufficient distance from it so as not to overlap. Thus ammonium ions with a radius of about $1.50 \AA$. and chloride ions with a radius of $1.81 \AA$. must either lie on the plane or at these or greater distances from it. Simple calculations then allow the prediction that the y parameter of the ammonium ions will either be exactly 0.25 or lie between +0.097 and -0.097 (or the corresponding limits 0.403 to 0.597). Similarly y for chloride ions will either be 0.25 or fall between +0.066 and -0.066 (or 0.434 and 0.566). Atoms lying on the mirror planes $(y=0.25)$ must occupy the set of positions $4(c)$, while if $y \neq 0 \neq 0.25$ these atoms must occupy the set of general positions $8(d)$, As there are twelve ammonium groups and twenty chlorine atoms to be placed, it is evident that some ammoniums and some chlorines may be situated in either the (c) or (d) positions with the parameter restrictions just explained. The other alternative is that some ammoniums and chlorines may be situated in symmetry centers with $y=0$, in which case they would occupy a set of $4(a)$ or (b) positions. The case of the zinc atoms is different. They must occupy one of the three sets $(a),(b)$, or (c), and therefore the y parameter must be either 0 or 0,25 . It should be possible to distinguish between these two possibilities from the appearance of the plot of the Patterson-Harker function $P(0 y 0)$.

Using F^{2} data from about 600 planes the function $P(0 y 0)$ was summed by the method of Patterson and Tunell. ${ }^{22}$ The functions $P\left(\frac{1}{2} 0 z\right)$ and $P\left(x \frac{1}{2} \frac{1}{2}\right)$ were also summed. The plot of $P(0 y 0)$, in contrast to the other two, was found to be particularly lacking (except for the peak at the origin) in any peak high enough to be attributed to a $\mathrm{Zn}-\mathrm{Zn}$ interaction. It seemed reasonable to conclude, therefore, that the zinc atoms are on the symmetry planes $(y=0.25$ and 0,75$)$. From the most conspicuous maximum on $P\left(\frac{1}{2} 0 z\right)$ (see Fig. 3) it was concluded that the zinc atoms are at a distance of $z=0.145$ from the a glide plane, corresponding to a parameter of $z=0.105$ or 0.355 . The very high peak on $P\left(x \frac{1}{2} \frac{1}{2}\right)$ (see Fig. 1) suggested that zinc had an x parameter of 0.185 or 0.315 . The four zinc atoms were thus assigned to
(21) Patterson, ibid., 90, 517 (1935); Harker, J. Chem. Phys., 4, 381 (1936).
(22) Patterson and Tuneil, Am. Mineral, 27, 655 (1942).
a set of $4(c)$ equivalent positions with the approximate parameters $x=0.315$ and $z=0,105$.
In order to locate the chlorine atoms it was decided to enlist the aid of appropriate two-dimensional Patterson-Harker summations. First the function $P\left(x \frac{1}{2} z\right)$ for a summation perpendicular to b, making use of the y screw axis, was used. A plot of this function is shown in Fig. 1. The contour elevations are in arbitrary units. While this function should yield information relative to the x and z parameters of all of the atoms, much ambiguity was encountered in its interpretation because of the great multiplicity of factors which can contribute to its maxima. The plot is really a plane section through Patterson space at $y=1 / 2$, and it may contain maxima due to the following causes: (1) Two equivalent atoms related by a y screw axis. Several of these peaks are to be expected. (2) Two equivalent atoms related by the n glide. Such pairs will give maxima with the coordinates: $x=$ twice the perpendicular distance of either atom from the n plane, $z=0.50$. These peaks will lie along the line $z=0.50$ and several are to be expected. (3) Any two like or unlike atoms lying on alternate mirror planes, since they are necessarily separated by a y interval of 0.50 . The coördinates of these peaks will be $x=$ the x component of the vector separating them in the crystal itself, and $z=$ the z component of this vector. A considerable number of maxima of this kind should appear. (4) Finally, any of two like or unlike atoms in the structure which happen to be separated by a vector distance the y component of which is approximately 0.50 . Maxima of this kind are apt to be numerous only if a number of atoms lie very close to the planes $y=0$ and 0.50 . The one dimensional summations indicated this to be the probable situation in $\left(\mathrm{NH}_{4}\right) \mathrm{ZnCl}_{5}$.

Peak no. 6 of Fig. 1 could be attributed to the interaction of two zinc atoms related by a screw axis if their parameters are $x=0.310$ and $z=$ 0.109 . These values are in excellent agreement with the zinc parameters deduced from the onedimensional summations. The very high peak no. 1 was taken to be due to the action of the n glide plane, and to represent a large number of atoms (including zinc) lying at distances from the glide plane ranging from $x=0.03$ to 0.115 . This too is in agreement with conclusions reached from the plot of $P\left(x \frac{1}{2} \frac{1}{2}\right)$. The remaining peaks could not be identified until information from other twodimensional summations was available.

There was no evidence to indicate that in the c direction the bulk of the atoms lie on planes separated by intervals of $z=0.50$, an arrangement which exists in the b direction and thereby introduces many unwanted maxima into the plot of $P\left(x \frac{1}{2} z\right)$. Accordingly the function $P\left(x y \frac{1}{2}\right)$, making use of the z screw axis, was evaluated. The only important maxima not arising from the action of the z screw axis will be those due to the n glide plane. The latter will give no trouble since

Fig. 1.-A plot of the function $P\left(x \frac{1}{2} z\right)$. The upper edge of the plot represents the function $P\left(x \frac{1}{2} \frac{1}{2}\right)$. The contour elevations are in arbitrary units. Peaks nos. 1 and 6 lead to parameters $x=0.315$ and $z=0.105$ for the zinc atoms.
they will lie on the line $y=0.50$. In fact, the previous one- and two-dimensional plots allow the prediction of a very large peak at $x=0.130$ and $y=0.50$ in the plot of $P\left(x y \frac{1}{2}\right)$.

Figure 2 is the completed plot of $P\left(x y^{\frac{1}{2}}\right)$, and the very large maximum no. 1 at $x=0.134$ and $y=0.50$ verifies the prediction above. The only other high peak is no. 4 at $x=0$ and $y=0.310$. It turned out to be fundamentally important in arriving at the correct structure. First, it was noted that it could not be due to the action of the z screw axis because, if this were true, it would place an atom unpermissibly close to a mirror plane. It would require an atom to lie at a distance of $y=$ 0.095 from a mirror plane, and it has been shown earlier that neither ammonium nor chloride ion can approach closer than a distance of $y=0.153$ from such a plane. Likewise, peak no. 4 could not be due to the action of the n glide, since all peaks of that class fall at $x=x, y=0.50$. It was therefore concluded that this peak is due to an accidental relationship in the structure involving two atoms of strong diffracting power separated by a vector distance with the components

$$
x \cong 0 \quad y=0.310 \quad z \cong 0.50
$$

The height of the peak could only be attributed to a $\mathrm{Zn}-\mathrm{Cl}$ interaction, with perhaps more than one chlorine per zinc atom. Calculations showed this

Fig. 2.-A plot of the function $P\left(x y \frac{1}{2}\right)$. The very large peak no. 1 results from the action of the n glide plane, and represents a large number of interactions (including zinc). Peak no. 4 results from a $\mathrm{Zn}-\mathrm{Cl}_{\mathrm{D}}$ interaction.
would necessitate the presence of eight chlorine atoms in a set of general positions with the parameters

$$
x \cong 0.185 \quad y=0.060 \quad z \cong 0.105
$$

These will be designated from this point on as Cl_{D} atoms. The precise parameters given above lead to the improbably short $\mathrm{Zn}-\mathrm{Cl}_{\mathrm{D}}$ distance of $2.18 \AA$., but a slight permissible shift in the 2 parameter to $z=0.055$ increases the $\mathrm{Zn}-\mathrm{Cl}_{\mathrm{D}}$ distance to approximately $2.30 \AA$., which is the expected $\mathrm{Zn}-\mathrm{Cl}$ distance for tetrahedral covalent coördination. ${ }^{23}$ The greater shift necessary to increase the interatomic distance to the octahedral coördination distances of 2.44 and $2.55 \AA$. previously discussed would probably change the z component of the vector so much as to prevent a conspicuous peak in the plot of $P\left(x y \frac{1}{2}\right)$. This shift was also supported by the one dimensional plots $P\left(\frac{1}{2} 0 z\right)$ and $P(0 y 0)$. Accordingly, eight Cl_{D} atoms were tentatively assigned to a set of $8(d)$ positions with the shifted parameters just mentioned.

It now seemed very probable that a large number of atoms was located on the mirror planes at $y=0.25$ and 0.75 . If so, a plot of $P(x 0 z)$, even though the structure possesses no direct two-fold axis, would yield particularly valuable information in the present problem, since it should contain large maxima for $\mathrm{Zn}-\mathrm{Zn}$ and $\mathrm{Zn}-\mathrm{Cl}$ vectors. The zinc atoms were already known to lie on these planes, and it appeared probable that eight and perhaps all twelve of the remaining chlorines lay on them also.

[^2]

Fig. 3.-A plot of the function $P(x 0 z)$. The right-hand edge of the plot represents the function $P\left(\frac{1}{2} 0 z\right)$. This section gives parameter data for the large number of atoms located on the symmetry planes, even though the structure possesses no direct two-fold axis.

In the plot of $P\left(x O_{z}\right)$, Fig. 3, peaks nos. 11 and 12 , respectively, confirm the parameters previously assigned to zinc and Cl_{D}. Peaks nos. 2 and 7 were taken to represent $\mathrm{Zn}-\mathrm{Cl}$ vectors, and calculation showed their magnitudes to be 2.31 and $2.27 \AA$., respectively, values almost identical with the Zn - Cl_{D} distance already fairly well established. The positions of these peaks not only give the absolute magnitudes of the interatomic vectors but also their directions. They thus lead to the placing of two sets of four chlorine atoms in the $4(c)$ positions with the approximate parameters: Cl_{A} with $x=0.382, z=0.282$; Cl_{B} with $x=0.030, z=0.480$. In placing these chlorine atoms as described, a tetrahedral grouping of chlorine about zinc results, all edges of the tetrahedron being of approximately the same length, $3.70 \AA$., a distance in good agreement with twice the ionic radius ($1.81 \AA$.) of chlorine. The re. maining four chlorine atoms, designated Cl_{c}, were found to be responsible for peaks nos. 4 and 5, and their required parameters. were found to be approximately $x=0.165$ and $z=-0.230$.

Scale drawings of the packing of the zinc and chlorine atoms, in the positions listed above, and assuming the accepted ionic radii, revealed the presence of very definite openings of approximately the necessary dimensions to accommodate

Fig. 4.一 $\rho(x, z)$. Fourier projection of electron density on (010).
all twelve ammonium groups. Accordingly the ammonium groups were placed in these cavities and their approximate parameters determined. Structure factors were then calculated for a series of planes using the predicted values of the parameters. Their agreement with the observed F's was for the most part very satisfactory, and was taken as conclusive evidence that the approximate structure had been determined,

The preliminary values of the parameters were revised by preparing two Bragg projections of the electron density, one on (010) and the other on (001). These projections, Figs. 4 and 5, not only served to refine certain of the parameters but they also constitute a clear-cut portrayal of the atomic arrangement in $\left(\mathrm{NH}_{4}\right)_{i} \mathrm{ZnCl}_{5}$. Still further improvement in the agreement between calculated and observed structure factors was obtained by systematically varying one parameter at a time. The final choice of parameters is given in Table I. The possible limits of error are believed to be:

Table I
Final Values of the Parameters

Atom or ion	x	y	z
$4 \mathrm{Zn}_{\mathrm{n}}$	0.314	(0.250)	0.107
$4 \mathrm{Cl}_{\mathbf{A}}$.377	$(.250)$.282
$4 \mathrm{Cl}_{\mathbf{B}}$.034	$(.250)$.483
4 Cl	.162	$(.250)$	-.229
$8 \mathrm{Cl}_{\mathbf{D}}$.190	.058	.084
$4\left(\mathrm{NH}_{4}\right)_{\mathbf{m}}$.424	$(.250)$	-.458
$8\left(\mathrm{NH}_{4}\right)_{0}$.412	.000	-.180

Fig. 5. $-\rho(x, y)$. Fourier projection of electron density on (001).
for $\mathrm{Zn}, \mathrm{Cl}_{\mathrm{B}}, \mathrm{Cl}_{\mathrm{c}}, \mathrm{Cl}_{\mathrm{D}}$, and $\left(\mathrm{NH}_{4}\right)_{0} \pm 0.003$; for $\mathrm{Cl}_{\mathrm{A}},\left(\mathrm{NH}_{4}\right)_{\mathrm{m}} \pm 0.005$.

Using the parameter values in Table I, structure factors were calculated for more than 600 different reflections and compared with the observed values. In the entire list no unsatisfactory agreement was observed. A part ${ }^{24}$ of these data is presented in Table II.

In the end, the peaks on the six PattersonHarker diagrams were completely explained with the exception of the two small peaks, nos. 3 and 8 , on $P\left(x y \frac{1}{2}\right)$, Fig. 2, and the two smallest peaks on $P(0 y 0)$, all of which are believed to be spurious.

Discussion of the Structure

The atomic arrangement in $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{ZnCl}_{5}$ is best understood by reference to Figs. 6 and 7. Figure 6 shows a packing drawing of the front half of the cell on the (010) face. For the sake of clarity in portraying the positions of the zinc atoms and the orientations of the $\mathrm{ZnCl}_{4}=$ tetrahedra found in the structure, the atoms on the mirror plane at $y=0.25$ are shown as open circles, while atoms at the approximate levels $y=0$ and 0.50 are repre. sented as shaded circles (shaded atoms shown are actually those at $y=0.50$) with their actual levels indicated by a pair of numerical values. By rotating the diagram through 180° about a perpendicular axis at its center, an accurate representation of the packing in the back half of the cell is obtained. Figure 7 is a pseudo-perspective drawing of the arrangement of part of the atoms in the unit cell. It aims to show important coördination groups in the structure, each kind of group being

[^3]| Table II | | | | | | 242 | 38 | 35.4 | 414 | 84 | 75.1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Structure Factor Data ${ }^{24}$ | | | | | | 442 | 89 | 81.7 | 614 | 90 | -83.2 |
| hkl | $F \mathrm{Ob}$. $\times 21$ | $F_{\text {Casled. }}$ | ${ }_{\text {hkl }}$ | $F_{\text {Obs. }} \times 21$ | $F_{\text {calad, }}$ | 642 | 21 | r $-\quad 2.5$ $-\quad 10.9$ | 814 | 47 | - 57.6 |
| 200 | 51 | - 78.2 | 048 | 59 | 50.3 | 143 | 14 | - 10.9 | 115 315 | 113 | 149.2 13.8 |
| 400 | 61 | - 66.6 | 0.4.10 | 50 | 67.6 | 511 | 57 | 73.3 | 515 | 0 | - $-\quad 3.9$ |
| 600 | 82 | 109.5 | 0.4.12 | 0 | - 23.9 | 711 | 33 | - 42.3 | 715 | 70 | 54.6 |
| 800 | 66 | -108.9 | 064 | 18 | - 29.4 | 911 | 59 | - 80.1 | 915 | 10 | 54.6 $-\quad 21.1$ |
| 10.0 .0 | 21 | 47.5 | 066 | 108 | 89.9 | 212 | 9 | - 4.6 | 216 | 10 | -21.1 $-\quad 23.7$ |
| 020 | 108 | -163.7 | 068 | 43 | - 43.6 | 412 | 46 | - 49.1 | 416 | 16 | - 23.7 |
| 040 | 177 | 301.5 | 0.6 .10 | 27 | - 40.2 | 612 | 19 | - 7.1 | 416 616 | 16 48 | -16.8 -29.8 |
| 060 | 168 | -216.2 | 0.6.12 | 0 | 24.9 | 812 | 13 | 1.2 | 816 | 48 0 | - $\quad 6.8$ $-\quad 6.8$ |
| 080 | 80 | 116.4 | 082 | 48 | - 59.4 | 10.1 .2 | 36 | - 64.9 | 8117 | 18 | $\begin{array}{r}\text { [} \\ -\quad 0.8 \\ \hline 28.2\end{array}$ |
| 0.10 .0 | 126 | -185.5 | 084 | 0 | 23.8 | 513 | 39 | 25.2 | 317 | 18 | 28.2 $-\quad 20.8$ |
| 0.12 .0 | 56 | 112.5 | 086 | 0 | 8.4 108.5 | 713 | 51 | 68.8 | 517 | 15 24 | $\begin{array}{r}-9.8 \\ \hline 9.4\end{array}$ |
| 002 | 44 | 39.8 | 088 | 88 | 108.5 | 913 | 0 | 2.1 | 717 | 52 | $\begin{array}{r}\text { 77. } \\ \hline\end{array}$ |
| 004 | 44 | 39.9 | 0.8.10 | 48 33 | 95.8 30.5 | 214 | 78 | - 68.7 | 917 | 0 | ¢ $-\quad 9.6$ |

outlined by a different kind of line. The y coordinates of the atoms are indicated by numbers on the various circles, and the traces of the mirror planes m are indicated on the top and bottom of the cell.

The unit cell of $\left(\mathrm{NH}_{4}\right)_{8} \mathrm{ZnCl}_{5}$ contains four tetrahedral ZnCl_{4} groups. The calculated $\mathrm{Zn}-\mathrm{Cl}$ distances are $2.23,2.24,2.24$, and $2.27 \AA$. Allowing for a probable experimental error of $\pm 0.03 \AA$. in measuring these distances, the zinc atom can be considered to be equidistant from the four chlorines at the corners of the tetrahedron. The six edges of the tetrahedron vary in length from 3.60 to $3.78 \AA$., indicating it to be a nearly regular tetrahedron, The average $\mathrm{Zn}-\mathrm{Cl}$ distance, 2.25 \AA., is slightly smaller than the sum of the accepted tetrahedral covalent radii, ${ }^{24} 2.30 \AA$. Since the expected interionic distance for four-fold coordination of chlorine about zinc is about $2.35 \AA ., 25$ it can be concluded that the $\mathrm{Zn}-\mathrm{Cl}$ bond is largely covalent in character. The average $\mathrm{Cl}-\mathrm{Cl}$ separaration within the tetrahedra is $3.67 \AA$., a value well in keeping with twice the ionic radius of chlorine, $3.62 \AA$. The closest approach of a chlorine atom outside a given tetrahedron to the central zinc atom is $4.06 \AA$., the distance to a Cl_{A} atom in a neighboring tetrahedron.
The environment of the four remaining chlorine atoms in the cell, Cl_{c}, is interesting. They are separated from the zinc atoms by distances of 4.44 and $4.83 \AA$., and each one is surrounded by a distorted octahedron (Fig. 7) of $\mathrm{NH}_{4}+$ ions as its, nearest neighbors, with $\mathrm{Cl}_{\mathrm{C}}-\mathrm{NH}_{4}$ distances of 3.14 $3.35,3.35,3.48,3.48$, and $3.68 \AA$. The average of these distances, $3.41 \AA$. is slightly larger than the sum of the ionic radii for Cl^{-}and freely rotating $\mathrm{NH}_{4}{ }^{+}$, namely, $3.31 \AA$. From an examination of Figs. 6 and 7 it is apparent that each $\mathrm{Cl}_{\mathrm{c}}-\mathrm{NH}_{4}$ octahedron shares two faces with neighboring octahedra in the a direction, thus forming continuous chains through the lattice. This is not to be interpreted as productive of a strongly bonded structure in the a direction because the $\mathrm{Cl}-\mathrm{NH}_{4}$

[^4]

Fig. 6.-Packing drawing of the front half of the cell on the (010) face. Chlorine, ammonium, and zinc are represented by large, medium, and small circles, respectively. Open circles represent atoms lying on the mirror plane at $y=0.25$, while shaded circles are atoms at the approximate levels $y=0$ and 0.50 .
bond is ionic, non-directional, and weak in magnitude compared with the $\mathrm{Zn}-\mathrm{Cl}$ bond.

The structure may now be considered from the standpoint of the environment of the ammonium ions. The eight $\left(\mathrm{NH}_{4}\right)_{0}$ groups are surrounded by distorted trigonal prism groupings of six chlorine atoms. One of these is shown in the lower part of Fig. 7 in dotted lines. Three of the chlorines lie on one mirror plane at $y=0.25$ and the remaining three are on the next one at $y=0.75$. The average $\mathrm{Cl}-\left(\mathrm{NH}_{4}\right)_{0}$ distance within the trigonal prism is $3.44 \AA$., compared with $3.41 \AA$, in the $\mathrm{Cl} \mathrm{C}_{\mathrm{C}}-\mathrm{NH}_{4}$ octahedra. In addition each $\left(\mathrm{NH}_{4}\right)_{0}$ is surrounded by three more chlorine atoms (Cl_{D}), in positions opposite the side faces of the prism, at a greater average distance, $3.63 \AA$. Since four of the six chlorine atoms at the corners of the trigonal prism are actually members of $\mathrm{ZnCl}_{4}-$ tetrahedra, it is seen that the prism does not exist as a distinct entity in the structure.
The environment of the four $\left(\mathrm{NH}_{4}\right)_{\mathrm{m}}$ groups is unsymmetrical and not capable of clear-cut portrayal in either Fig: 6 or 7. Each $\left(\mathrm{NH}_{4}\right)_{\mathrm{m}}$ group is surrounded by eight chlorine atoms at the corners of an irregular polygon with an average $\left(\mathrm{NH}_{4}\right)_{\mathrm{m}}-\mathrm{Cl}$ distance of $3.32 \AA$., a value in excellent agreement with $3.31 \AA$., the sum of the ionic radii. The closest approach of zinc atoms and ammonium ions in the structure is $\mathrm{Zn}-\left(\mathrm{NH}_{4}\right)_{\mathrm{m}}=$ $3.89 \AA$.

The stoichiometric composition $\mathrm{A}_{\mathrm{m}} \mathrm{MX}_{5}$ is achieved in $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{ZnCl}_{6}$ by a packing of $\mathrm{NH}_{4}{ }^{+}$, tetrahedral ZnCl_{4}^{-}, and Cl^{-}ions, This is in marked contrast to the structures of $\mathrm{Tl}_{2} \mathrm{AlF}_{\mathrm{s}}$ and $\mathrm{K}_{2} \mathrm{AlF}_{6} \cdot \mathrm{H}_{2} \mathrm{O}$ in which a similar stoichiometry is

Fig. 7.-A pseudo-perspective drawing of part of the atoms in the cell to show important coordination groups in the structure. The tetrahedral ZnCl_{4} groups, the octahedral coördination of NH_{4} around Cl_{c}, and the trigonal prismatic arrangement of Cl around ($\left.\mathrm{NH}_{4}\right)_{0}$ are clearly shown.
attained through infinite-chain anions of the composition $\mathrm{AlF}_{5}{ }^{-}$formed through the sharing of opposite vertices of AIF ${ }_{6}$ octahedra. In view of the packing observed in $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{ZnCl}_{5}$, it would appear that more accurate information concerning its chemical nature would be conveyed by writing its formula $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{ZnCl}_{4} \cdot \mathrm{NH}_{4} \mathrm{Cl}$.

Examination of the structure shows that the two kinds of anions, ZnCl^{-}- and Cl^{-}, are bound together by a fairly uniform distribution of $\mathrm{NH}_{4}{ }^{+}$ cations, and it may be concluded that the strength of the bonds is approximately the same in all directions through the crystal. This probably explains the absence of a cleavage plane in crystals of $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{ZnCl}_{5}$.

Acknowledgment.-One of the authors (L. A.) wishes to express his gratitude and appreciation to the Graduate School of the University of Minnesota for the Shevlin Fellowship in chemistry under which a large part of this research was done,

Summary

The complete crystal structure of $\left(\mathrm{NH}_{4}\right)_{3}$ ZnCl_{5} has been determined from Laue and rotating and oscillating crystal photographs by the Patterson-Harker and Bragg-Fourier methods. The crystal is orthorhombic bipyramidal, with $a_{0}=8.74 \AA ., b_{0}=9.84 \AA$., and $c_{0}=12.61 \AA$. The space group is $D_{2 h}^{16}$-Pnma, and the unit cell contains four molecules of the composition $\left(\mathrm{NH}_{4}\right)_{8}-$ ZnCl_{6}.
The positions of the atoms are fixed by sixteen parameters (Table I) whose values were obtained
with considerable accuracy. The zinc atoms are surrounded tetrahedrally by chlorine atoms at an average distance of $2.25 \AA$., and an extra chlorine atom not co3rdinated with the zinc is present to give the required stoichiometry. These extra chlorine atoms are octahedrally surrounded by amm onium ions at the average distance, $3.41 \AA$. One kind of ammonium ion is surrounded by a trigonal prism grouping of chlorine atoms at an average distance of $3.44 \AA$., while the other am.
monium groups are surrounded by an irregular polygon of eight chlorine atoms at the average distance of $3.32 \AA$. The $\mathrm{Zn}-\mathrm{Cl}$ bonds in the $\mathrm{ZnCl}_{4}=$ tetrahedra are essentially covalent, while all other bonds in the structure (except $\mathrm{N}-\mathrm{H}$) are essentially ionic in nature. The structure is a packing of $\mathrm{NH}_{4}{ }^{+}, \mathrm{ZnCl}_{4}{ }^{=}$, and Cl^{-}ions, and the formula of the compound would best be repre. sented by $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{ZnCl}_{4} \cdot \mathrm{NH}_{4} \mathrm{Cl}$.
Minneapolis Minnesota Received April ī, 1944

The Heat Capacity of Carbon Tetrachloride from 15 to $300^{\circ} \mathrm{K}$. The Heats of Transition and of Fusion. The Entropy from Thermal Measurements Compared with the Entropy from Molecular Data

By J. F. G. Hicks, J. G. Hooley ${ }^{1 a}$ and C. C. Stephenson

The calculation of the thermodynamic func. tions of carbon tetrachloride from molecular data has been the subject of a number of papers. ${ }^{1 b-反}$ The entropy of carbon tetrachloride calculated from the existing thermal data ${ }^{6 \rightarrow 9}$ agrees quite well with the theoretical entropy value, ${ }^{2}$ but this agreement is somewhat fortuitous because the thermal entropy may be in error by as much as one entropy unit. The thermal data of this paper reduce the uncertainty of the third law entropy value and give an answer which is more reliable than that calculated from molecular data.
Material.-Two samples of carbon tetrachloride were used for the measurements. Both samples were prepared from Merck C. P. material which was distilled three times in a vacuum.jacketed column, the first and last quarter being rejected each time. The second sample was protected from light at all times. Melting.point determina. tions indicate that both samples contained about 0.02 mule per cent. of liquid•soluble solid-insoluble impurity, although the absence of any marked premelting effect on the heat capacity measurements in the region below the melting point gives a much smaller figure.
The measurements below $265^{\circ} \mathrm{K}$. were made with Sam. ple I which weighed 136.86 g . in vacuum. Sample II, which weighed 134.06 g . in vacuum, was used for the other series. The molecular weight of carbon tetrachloride was taken as 153.84 .
Method.-The apparatus, metho. of measurement, and calorimeter have been described in an earlier paper. ${ }^{10}$ At the conclusion of the measurements, the thermometer was

[^5]checked at the melting points of ice and mercury and found to agree with the original calibration to within 0.01°.

The calorie used in this work is detined equal to +.1833 int. joules. The absolute temperature of the ice-point is taken as $273.19^{\circ} \mathrm{K}$.

Melting Point.-The melting point was observed with various percentages of the carbon tetrachloride melted. The results are summarized in Table I. The amount of impurity was calculated from the change observed in the melting point, and the accepted value, $250.3 \pm 0.1^{\circ} \mathrm{K}$, has been corrected for the effect of this impurity.

Table I
Melting Point of Carbon Tetrachloride

	$\%$	Melted	Time, hr.
Sample I	12	2	250.111
	12	3	250.094
	25	4.5	250.153
	25	5	250.149
	50	7.5	250.235
	50	8.5	250.234
	Sample II	15	3
	30	4.5	250.084
	30	5.5	250.148
	50	7.5	250.144
			Accepted value 250.3 ± 0.1

Transition Temperature. - Determinations of the transition temperature are summarized in Table II.

Table II

Transition Temperature at $225.35{ }^{\circ} \mathrm{K}$			
Trial	\% Transformed	Time	T, ${ }^{\circ} \mathrm{K}$.
I	50	9	225.355
II	30	5	225.356
	50	9	225.346
	50	11	225.353
III	15	5	225.347
	2.5	13	225.394
Accepted value $225.35 \pm 0.03^{\circ} \mathrm{K}$.			

Melting points and transition temperatures ob. served by other experimenters are given in Table

[^0]: (6) Pierre, Ann. chim. phys., [3] 16, 250 (1846)
 (7) Marignac, Ann. Mines, [5] 12, 1 (1857).
 (8) Base, Am. Chem. J., 20, 660 (1898)
 (9) Meerburg, Z. anorg. Chem., 37, 199 (1903).
 (10) Rammelsberg," Handbuch der krystallographischen Chemie,' Berlin, 1855, p. 205.
 (11) Johnsen, Z. Krist., 41, 527 (1906)
 (12) Kolthoff and Sandell, "Textbook of Quantative Inorganic Analysis," The Macmillan Company. New York, N. Y., 1943, pp. 327 and 307.

[^1]: (17) 'International Tables for the Determination of Crystal Structures," Vol. I, p. 138
 (18) Pauling, "The Nature of the Chemical Bond," Cornell University Press, Ithaca, N. Y., lst ed., 1939, p. 326.
 (19) Bruni and Ferrari, Atii accad. Lincei, 2, 457 (1925); 4, 10 (1926).
 (20) Pauling and Hoard, Z. Krist., 74, 546 (1930).

[^2]:

[^3]: (24) In the interest of the conservation of space data from only 150 planes are presented here as a sample of the kind of agreement observed. Data from the remaining 450 planes are comparable and are available to anyone interested upon request

[^4]: (25) Reference 18, pp. 347-350.

[^5]: (1a) Royal Society of Canada Fellow.
 (1b) D. P. Stevenson and J. Y. Beach, J. Chem. Phys., 6, 25, 108 (1938).
 (2) K. C. Lord, Jr., and E. K. Blanchard, ibid., 4, 707 (1936).
 (3) R. D. Vold, This Journal, 67,1192 (1935)
 (4) K. K. Kelley, Contributions to the Data on Theoretical Metallurgy, 1 X . The Entropies of Inorganic Substances, Revision (1940) of Data and Methods of Calculation. Bull. 484, Bureau of Mines, 1941.
 (3) D. M. Yost and C. Blair, 'rhis Journal, 65, 2610 (1933),
 (6) W. M. Latimer, ibid., 44, 90 (1922).
 (\%) H. L. Johnston and E. A. Long, ibid., 56, 31 (1934).
 (8) D. R. Stul!, ibin., 89, 2726 (1937).
 (b) J. H. Mathews, ibid., 48, 562 (1926).
 (10) J. F. C. Hicket ibid, 50, 1000 (1038).

